
Clarifying Some Issues in the 

Analysis of Survey Data

Phillip S. Kott

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

The literature offers two distinct reasons for incorporating sample weights
into the estimation of linear regression coefficients from a model-based point
of view.    Either the sample design is informative or the model is incomplete.
The traditional sample-weighted least-squares estimator can be improved
upon when the sample design is informative, but not when the standard
linear model fails and needs to be extended.   

It is often assumed that the realized sample derives from a two-phase
process.  In the first phase, the finite population is drawn from a hypothetical
superpopulation via simple random (cluster) sampling.  In the second phase,
the actual sample is drawn from the finite population.  Many think that the
standard practice of treating the (cluster) sample as if it was drawn with
replacement from the finite population is roughly equivalent to the full two-
phase process.  That is not always the case. 
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1. Introduction 

How best to estimate the coefficients in a linear model when the observations

derive from a sample survey has generated considerable interest in the literature.  Kott

(1991) provides a model-based argument for incorporating sample weights into the

linear regression estimator.   Recently, Magee (1998) and Pfeffermann and Sverchkov

(1999) show how the traditional sample-weighted least-squares estimator can be

improved upon even when the sample design is informative.

We will restrict our attention here to a semi-parametric model, by that we mean a

stochastic model where the functional form of the distribution of the error term is not

assumed.  We will reformulate Kott’s argument into a fully stochastic framework that

weakens the standard linear model by assuming only that the error term is uncorrelated

with the explanatory variables.  We will call this the “extended model” (Kott’s term, but

given a stochastic definition here).    

We will also investigate the standard linear model, in which  the expected value

of the error term, ,,  conditioned on the explanatory-variable vector, x, is zero.  As in

both Magee and Pfeffermann and Sverchkov, however, we will allow the possibility that

the error term is related the sample weight. 

Under the extended linear model, a simple estimating equation leads to an

obvious solution: the traditional sample-weighted regression estimator.  This is the

sample-based analogue to an old result in the econometrics literature (White, 1980). 

Adding the stronger assumption of the standard linear model,  E(,|x) = 0, allows the
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construction of more efficient estimators.  

It is often assumed that the realized sample derives from a two-phase process. 

In the first phase, the finite population is drawn from a hypothetical superpopulation via

simple random (cluster) sampling.  In the second phase, the actual sample is drawn

from the finite population.  Many think that the standard practice of treating the (cluster)

sample as if it was drawn with replacement from the finite population is roughly

equivalent to the full two-phase process.  That is not always the case.  For stratified

sampling, the standard practice can miss a component of variance, although that

component can “defined away” by conditioning on realized finite-population fractions.  

For unstratified, unequal probability sampling, there is the possibility that the standard

practice will lead to biased variance estimation.  This problem remains in a model-free

environment. 

Section 2 lays out the basic framework of the extended and standard linear

models.   Section 3 provides a simple example of how a zero-meaned error term can be

uncorrelated with an explanatory variable but have a mean other than zero when

conditioned on it.  Section 4 contains some needed asymptotic (both large population

and large sample)  theory.   The notion of a complex random sample is first introduced

in Section 5.   Section 6 addresses variance estimation, where stratification can have 

confounding effects.  Section 7 discusses how to create a more efficient estimator

under the standard model when the data derives from a complex sample.  Section 8
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extends the previous analysis to a particular class of non-linear models.  Section 9

provides some concluding remarks.  

Our primary goal throughout is conceptual clarity rather than mathematical rigor. 

Many of the missing proofs can be found by adapting arguments in Binder (1983).  

2. The framework

Suppose we  are interested in estimating the following extended linear model

describing a relationship among variables in a population: 

                                                           yi = xi$  + ,i,                                                        (1)

where i (= 1, ..., M) denotes an element of the population, xi = (1, zi'),  zi is a 

(p!1)-component vector of variable values associated with element i, $ is an unknown

p-component column vector, and ,i is a random variable with mean zero. 

Our weak assumption about the error term, ,i, in equation (1) is E(xi',i) = 0p for

all i.  This is much weaker ! and thus more general ! than the assumption in the

standard linear model, E(,i|xi) = 0 for every possible xi.   The latter implies that ,i is not

only uncorrelated with the components of xi but also with any function of the

components of  xi.  
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If every member of the population is an equally likely realization of the model in

equation (1), then E[3 xi'(yi ! xi$)] =  0p.  This suggest we estimate $ with the vector b

that satisfies the estimating equation,  3 xi'yi = 3 xi'xib.     A  unique solution to this

equation exists when 3 xi'xi is invertible, which we assume to be the case for

convenience.  That solution is the ordinary least squares (OLS) estimator,  

bOLS = (3 xi'xi)
-13xi'yi, which is consistent under the extended model given the

asymptotic framework to be described in Section 4.  The OLS estimator is not

necessarily unbiased if xi is a random variable. 

The derivation of bOLS results directly from the weak assumption, E(xi',i) = 0p.  If,

however, we add that E(,i|xi) = 0, then E[(xi',ig(xi)] = 0p for any function of xi.  Indeed,

suppose E(,|X) = 0M, where , = (,1, ..., ,M)', and X is the M x p matrix with xi in its ith

row.  This is a slightly stronger assumption than E(,i|xi) = 0 in principle, but effectively

the same in practice.  Observe that now  E[X'G(X),] = 0p, where G in any 

M x M matrix function of X.   This last equality suggests the estimating equation: 

     X'G(X)(y ! Xb) = 0p,                            (2)

where y = (y1, ..., yM)'. 

It is not hard to see that solving equation (2) for b provides a consistent estimator

of $; namely, bG = [X'G(X)X]-1 X'G(X)y.   In fact, bG is unbiased given X under the

standard model.  Moreover, it is well known that the most efficient solution obtains when
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G(X) is related to the variance of ,; in particular, when E(,,'| X) = S = [kG(X)]-1 for

arbitrary constant k.   Consequently, the form G(X) takes in practice usually reflects

some estimate of, or belief about, S.   

In truth, S is rarely known even up to a constant.  Throughout the text, we will

take the position that one can have some reasonable hypothesis about S and

incorporate it into the choice of G(X).  Nevertheless, the hypothesis is potentially in

error, and variance estimation schemes should protect against that possibility.

In principle, we may want to hypothesize that S depends, at least in part, on

population variables that are not functions of xi.  The implied extension to the argument

of G(.) adds nothing substantive to the discussion and will be ignored here.   

Notice that when G(X) in equation (2) is set equal to IM, the equation becomes

the estimating equation for the extended model.  Moreover, the equation, E(X',) = 0p is

precisely the weak assumption of the extended model stated in matrix form. 

3.  An example

 

The following example shows why the weaker assumption, E(xi',i) = 0p, can be a

useful alternative to the standard model assumption, E(,i*xi) = 0.  Suppose we have a

population in which the relationship yi = zi
(  for ( � 1 is strictly satisfied.  We do not know

this, however, and try to set xi$ in equation (1) equal to $1 + $2zi.    
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The OLS estimates for $2 and $1 are

b2 = (3 zi
(+1 ! 3 zi

( 3 zi /M)/(3 zi
2 ! [3 zi]

2/M), and

b1 = 3 (zi
( ! b2zi)/M,  

respectively.  We make the relatively mild assumption that the series 3 zi
"/M converges

to a constant, say z("), as M grows arbitrarily large, where " can have any of the

following values: 1, 2, (, or (+1.    Under this assumption, b2 converges to 

$2 = (z((+1) ! z(()z(1))/(z(2) ! [z(1)]2), 

and b1 to $1 = z(() ! $2z
(1).   

It is now easy to see that 

,i = zi
( ! ($1 + $2zi) =  (zi

( ! z(()) ! {(z((+1) ! z(()z(1))/(z(2) ! [z(1)]2)}(zi ! z(1)). 

Although ,i can have mean zero and be uncorrelated with zi,  E(,i*zi) can not be equal

to zero for all zi.  In fact, ,i is clearly a function of zi.

 The example show that the weak assumption E(xi',i) = 0p allows a flexibility in

model construction that is unavailable with E(,i*xi) = 0.    Since reality very seldom fits a

postulated model, this flexibility is fortuitous.   In our example, when  E(,i*xi) = 0 is

assumed, the model yi = $1 + $2zi + ,i is simply wrong, and its parameters cannot be
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estimated.   When E(xi',i) = 02 is assumed, however, the parameters of the model can

be estimated.  Many will argue that we should not estimate parameters for “wrong”

models, but aren’t all models wrong?

4.  Some Asymptotic Theory 

In this section, we develop some theory for bG under the standard linear model. 

It is straightforward to do the same for bOLS under the extended model by setting G(X)

equal to IM. 

For bG to be a consistent estimator for $, a number of asymptotic conditions

must be satisfied.  It is sufficient that as M grows arbitrarily large 

                                          
          lim (X'G(X)X /M) = F                                                         (3.1)

                                         M64  

and

                                         plim (X'G(X), /¾M) = d                                                       (3.2) 
                                         M64 

for some positive definite matrix F and bounded vector d.  Under these conditions, one

can easily show that bG ! $ =  Op(¾[1/M]).  These assumption do no require G(X) to

have a particular form.  It should prove helpful, however, for only OP(M) of the terms in

the M x M matrix to be non-zero, so that each entry of the matrix X'G(X)X would be the
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sum of no more that OP(M) terms. 

Let Di be an M x M with zeroes everywhere but the ith diagonal, which is 1.  Let 

ui = X'G(X)Di', (this vector depends on the choice for G(.), but we suppress that in the

notation).   Suppose the population can be grouped into J mutually exclusive clusters,

denoted C(1), ..., C(J), such that E(uiuk'*X) is non-negative definite when i and k are in

the same cluster and equal to 0pxp otherwise.  An analogous assumption about E(uiuk')

is needed under the extended model.    Although we will relax many assumptions in this

discussion, we will not allow the ones above to fail, at least not when variances need to

be estimated.  

In many practical situations, the M elements in the population will serve as the J

clusters.  In others, there will be a clear need to collect elements whose error terms can

not be assumed uncorrelated into clusters, as we shall see in the following section. 

In practice, a good choice for G(X) will mimic the cluster structure.  That is to say

Gik(X) will be zero when i and k are in different clusters.   We will assume that to be the

case for the remainder of the text.   Moreover, we will assume G to be symmetric.

The “sandwich estimator” for the variance of bG is  

                                                  J
                                   V = [X'G(X)X]-1 3 Rj+ Rj+'[X'G(X)X]-1,                                           (4)
                                                           j=1 

where Rj+ = X'G(X)Dj+(y ! XbG), and Dj+ is a diagonal matrix with 1's in the rows

corresponding to elements of cluster C(j) and 0's everywhere else.  Note that Rj+
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approximately equals the sum of the ui across the elements in C(j).  If J/M converges to

a positive constant as M grows arbitrarily large, then it is not difficult to show under the

assumptions we have made that V is an asymptotically unbiased estimator for the

variance of bG. 

5.  Random Sampling

Solving equation (2) to derive a estimator for $ assumes that the M elements in

the population are generated by a process that produces elements satisfying equation

(1).  Moreover, were the process allowed to continue, the two parts of equation (3)

would likewise be satisfied.  

 Following Fuller (1975), we will treat the J clusters in the population as if they

were a simple random sample from a putative infinite population,  each of whose

elements satisfy equation (1).  Moreover, as the number of these clusters (and

therefore M) grows arbitrarily large equation (3) continues to hold.  

We are now ready to address the main concern of this paper.  Sometimes

analysts do not have access to information on all the variables in equation (1) for the

entire population.  Instead, a probability sample is drawn, and a complete set of

variable values are collected only for the sample.  We will concentrate here on a

stratified, multi-stage sample and ignore the possibility of element or item (i.e., variable)
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nonresponse.  

Suppose that, before sampling, the J clusters in the population are separated

into H mutually exclusive strata (H may be 1).  A probability sample of nh clusters are

selected within each stratum h without replacement (from now on, all samples are

assumed to be drawn without replacement).   The n = 3 nh sampled clusters are called

primary sampling units (PSU’s).   Probability samples of elements are drawn

independently within each PSU.  We allow the possibility that all the elements in a PSU

are drawn into the sample or that the PSU’s are themselves elements.  Let S denote

the element sample and m be the size of S.

If E(ui*X; i 0 S) = 0p, then solving X'DSG(X)DS(y ! Xb) = 0p for b, where 

DS = 3S Di , provides an unbiased and consistent estimator for $ under mild conditions. 

The assumption that  E(ui*X; i 0 S) = 0p effectively means that there is no information

about yi in the element selection probabilities not captured by xi$.  

What if that is not the case?

The solution is well-known in the literature on randomization-based inference

(see, for example,  Binder, 1983). Let ti be a random variable equal to 1 when i 0 S and

0 otherwise.  Furthermore, let Bi be the selection probability of element i (i.e., E(ti) = Bi),

and wi be its sample weight, 1/Bi.   Call the M x M diagonal matrices with ti and wi in

their ith position, T and W, respectively.  (Note that after the sample is drawn, T = DS.)

Suppose the vector bwG solves the equation:  
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     X'G(X)TW(y ! X$) = 0p,                                      (2')

When X'G(X)TWX is invertible,  bwG = [X'G(X)TWX]-1 X'G(X)TWy.   Applying equation

(2') in its most general form requires knowledge of the complete X matrix.  That will

often not be the case in practice, but there remains a host of viable choices for G(X).  

We return to the issue of choosing G(X) in Section 7.

If we assume that the variables and sample design are such that

                                          lim(3 X'G(X)TWX /M) = Fw                                               (3.1')
                                         n64  

and

                                         plim(3 X'G(X)TW, /¾M) = dw                                             (3.2') 
                                         n64 

for some invertible matrix Fw and bounded vector dw, then under mild conditions, 

bwG ! $ = Op(¾[1/n]).   Note, however, that it is possible for  bwG ! $ conditioned on a

particular sample to not  approximately equal zero.  The near asymptotic unbiasedness

of bwG occurs when we average over all possible samples.

In order to apply equation (3'), we need to impose an asymptotic framework on

the sample design.  We do this by assuming a infinite sequence of samples and

populations, {S<} and {P<}.   Let m< denote the number of elements in S<,  M< the

analogous size of P<, n< the number of PSU’s in S<, J< the number of clusters in P<,  H<

the number of strata in both S< and P<, and nh< the number of PSU’s from stratum h in
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S<. 

  As < grows arbitrarily large, so does nv.  The ratios, m< /n<, J< /n<, and M< /m< all

converge to positive constants.  When H is small, it makes sense to assume an

asymptotic framework in which H< stays the same as < grows,  and the nh< /n< converge

to positive constants.  Otherwise, the nh< can be assumed stay the same while H< /n<

converges to a positive constant   It is important to realize that full-population equation

(3) with M< replacing M is assumed to hold for each value of <.   

6.  Variance Estimation for bwG

6.1  Ideal Circumstance

Suppose E(uiuk'*X) =  E(uiuk'*X; i, k 0 S) = 0pxp when i and k are from different

clusters and non-negative definite otherwise (for the extended model, replace 

E(uiuk'*X; . ) with E(uiuk'; . ).  Under mild conditions, we can estimate the variance/mean

squared error of bwG  with an analogue of V in equation (4), namely, 

                                                                 J
                         V' = [X'G(X)TWX]-1 3 Rwj+ Rwj+'[X'G(X)TWX]-1,       (5)

           j=1                    

where  Rwj+ = X'G(X)TWDj+(yj+ ! Xj+bwG).   In many applications, however,  

E(uiuk'*X; i, k 0 S) may not equal  0pxp when  i and k are from different clusters.
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6.2  Stratification

Before discussing a more general variance or mean-squared-error estimator (the

former expression is used exclusively from here on), we first investigate the potential

effect of stratification on estimation under the extended model.  Analogous arguments

can be made for the standard model. 

Let 'i be an integer from 1 to H indicating which stratum contains i.   Although it

is often tempting to assume that E(ui*'i) = 0p, in some applications, this equality

imposes much on the model and is not very likely when there are a large number of

strata.   Alternatively, we can adopt the more general assumption E(ui*'i = h) = qh and

try to build a variance estimator for bwG around this assumption.  Unfortunately,

difficulties under multi-stage sampling arise when the implicit estimate of the population

size for a stratum is random.  

Instead, we will again adapt the pragmatic approach of invoking the

randomization-based properties of the estimator.  That is to say, we will treat the ti as

random variables rather than conditioning on the realized sample ! the usual practice in

most of statistics, but not survey sampling.  Mathematically, this changes the goal of

variance estimation from E[(bG ! $)(bG ! $)'*S] for every S to E[(bG ! $)(bG ! $)'].

Let uhj+ be the sum of the ui ( . X'G(X)Di ,) across all the subsampled elements

in PSU j of stratum h (when j is itself an element uhj+ = ui).  The expectation of  uhj+ is
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constant across the sampled PSU’s within a stratum, but can vary across strata. 

Consequently, we need assume that Nh /N, where Nh is the number of clusters in

stratum h, stays constant as N and M grow arbitrarily large in equations (3) and (3'). 

This means that the fraction of the population clusters in each stratum does not change

as the population grows arbitrarily large.  If it did, there could be another component of

variance not captured by the variance estimator to be discussed below.   For more on

the missing variance component, see Korn and Graubard (1998).  

The randomization-based variance estimator for bwG (see, for example, Binder,

1983) is 

VRB = [X'G(X)TWX]-1

                   H                           
                   3 (nh /[nh !1]) { 3   Rwj+ Rwj+' ! nh

-1 ( 3    Rwj+)( 3    Rwj+)' } [X'G(X)TWX]-1,     (6)
       h=1                   j0 Sh*                    j0 Sh*        j0 Sh*                                  

                                                                                                                                            
         
where Sh* is the set of sampled PSU’s in stratum h.   It  is asymptotically unbiased

under mild conditions when PSU’s are selected using stratified, simple random

sampling (technically, we should add that this result is conditioned on the realized Nh /N

values).   This is because within each stratum h, the Rwj+’s selected for the sample are

estimates of the same value and asymptotically uncorrelated.

Observe that when H =1 in equation (6), VRB will become asymptotically

indistinguishable from V' in equation (5) when 3S* Rwj+ = 0p, as happens when G is the
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identity matrix. 

If E(uiuk'* i, k 0 S) = 0pxp when i and k are from different clusters, then VRB can

easily be shown to be, like V', asymptotically unbiased given any sample.  It is not as

efficient, however.    

6.3  Unequal probability sampling

In most practical situations, VRB will be reasonable ! although not necessarily

asymptotically unbiased ! when PSU’s are selected with unequal probabilities within

strata.   The simplest case of unequal probability sampling is discussed in the Appendix

A: unstratified element sampling.  The root of the problem is that E(witi,i wktk,k) = 

E(,i,k Bik /[BiBk]), where Bik = E(titk), need not equal 0 when i � k just because E(,i,k)

does.   

 Asok and Sukhatme (1996) provide the following approximation for Bik when 

i � k under unstratified element sampling using either Sampford’s selection method or

systematic probability proportional to size sampling from a randomly-order list: 

Bik /(BiBk) .[(n ! 1)/n]{[1 + pi + pk ! 3M pg
 2 ] + [2(pi

 2 + pk
2 ! 3M pg

 3) + apipk 

! (a + 1){(pi + pk)3
M pg

 2 ! (3M pg
 2)2} ] },          (7)
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where n is the sample size, and pg = Bg /n.  They point out that a = 2 for systematic

probability proportional to size sampling from a randomly-order list, which following

them we will call “Goodman-Kish sampling.”  Furthermore, they show a = 2 ! n for

Sampford sampling.   

Since an element selection probability is bounded by 1, max{pk} # 1/n.  There are

n(n!1) cross terms in a randomization variance estimator.  As a result,  we cannot

ignore the [(n ! 1)/n][1 + pi + pk ! 3M pg
 2 ] component on the right hand size of equation

(7), but we can ignore the remaining terms when n is large (from equation (7), 

(Bik ! BiBk)/(BiBk) . ! (1 ! npi ! npk + n 3M pg
 2 )/(n!1)).   Consequently, if the (,k,Bk) are

serially independent, then E(,i,k Bik /[BiBk]) . 0, and VRB is asymptotically unbiased.

When there is stratification, it will not always be reasonable to assume that

E(,i,k) = 0 for i and k within the same stratum because E(,k *'k) need not be 0.   If that

is the case, then equation (A.3) in Appendix A suggests VRB may not be asymptotically

unbiased when there is unequal probability sampling within strata.  It may nonetheless

remain a reasonable variance estimator in many situations. 
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7.  Choosing G(X)    

Under the extended model, G(X) is set equal to IM.  The resulting estimator, bwLS,

is called the  “sample-weighted least squares” solution.   Under the standard model,

however, we are free to choose G(X) to minimize the mean squared error bwG.  When

the wi are not all equal for i , S, the choice is not obvious even when E(,,') is known up

to a constant.   Moreover, we are usually constrained in practice to G(.) that are

functions only of the xi in the sample.

One obvious viable choice for G(.) is a diagonal matrix with g(xi) in the ith

diagonal.   Magee (1989) considers the case where E(,,') = S has an unknown

diagonal matrix.  He proposes using a quasi-Aitken procedure to chose g(.) from among

a family of functions of the form g(xi; ") (note: in a quasi-Aitken procedure, one

chooses " seeking to minimize the estimated variances of the components of bwG

directly rather than through an estimate of S).  It is unclear how to generalize this

procedure when E(,,') is not diagonal, however. 

On the surface, Pfeffermann and Sverchkov address an even simpler situation:

the case where S = F2IM.  They suggest setting each g(xi) equal to the inverse of an

estimate for E(wi*xi ; i 0 S).  Effectively, they propose “filtering out” from the sampling

weight wi that part explainable by xi (their method of arriving at this proposal is much

different from ours, but that need not concern us here).  With their approach,
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generalization to more complex  S appears straightforward.  Let E(X) be an estimate of,

or belief, about S up to a constant.  Furthermore, let H(X) be a diagonal matrix with an

estimate for E(wi*xi ; i 0 S) in the ith diagonal.  Then G(X) can be set equal to

[E(X)H(X)]-1.  

Problems remain, however.  If xf is unknown when f is not in the sample, we

need to replace  bwG = [X'G(X)TWX]-1 X'G(X)TWy with something like 

bwG* = [X'TG(X)TWX]-1 X'TG(X)TWy.   At the heart of this is replacing G(X)TW with 

TG(X)TW.  The former has an expectation equal to G(X), a function of X.  The

expectation of the row-i-column-k component of the latter is Gik(X)E(tk * i 0 S).  This is a

function of X only when E(tk * i 0 S) is.  Moreover, for bwG* to be viable, Gik(X) with i and

k in S must be a function of only those xf with f 0 S.  Finally, bwG* need not be optimal in

any sense even when bwG would be unless the  E(tk * i 0 S) are all constant. 

A tempting alternative to computing a general bwG* is to choose a diagonal G(.),

based on the (assumed) diagonals of E(.) and suffer the loss of efficiency that may

imply.   No matter how bwG* is computed, if it is a consistent estimator for $, its variance

can be estimated using equation (6) with TG(.) replacing G(.) everywhere including the

definition of the Rwj+: 
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VRB = [X'TG(X)TWX]-1

                   H                           
                   3 (nh /[nh !1]) { 3   Rwj+ Rwj+' ! nh

-1 ( 3    Rwj+)( 3  Rwj+)' } [X'TG(X)TWX]-1,    (6')
       h=1                   j0 Sh*                    j0 Sh*        j0 Sh*                                  

                                                                                                                                           
 where  Rwj+ = X'TG(X)TWDj+(yj+ ! Xj+bwG).

Returning to a diagonal G(.), either because the sample is single-stage or

because the hypothesis of a diagonal S seems plausible with the data at hand,

Magee’s approach is the more straightforward, but it is not clear where the functional

form, g(xi; "), is supposed to come from.  Magee provides an empirical example where

the “wrong” choice does not hurt very much; that is to say, his method is nearly

unbiased and much more efficient than sample-weighted least squares.    

One appealing attribute of the Pfeffermann-Sverchkov approach is that the

sampling weights are shown to be ignorable when each wi can be fully expressed as a

function of xi.  A practical example of this is when selection probabilities are

proportional to zi1, the first component of zi.  

When selection probabilities are proportion to the yi, it makes sense to estimate

E(wi*xi ; i 0 S) up to constant by xibwLS.   Similarly, when the ,i are uncorrelated, and 

E(,i
 2) is thought to be proportional to (xi$)", one can replace the unknown $ by bwLS,

and use an Aitken or quasi-Aitken technique to choose ".  An iterative scheme may

return an even more efficient estimator.
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8.  Nonlinear models

In this section, we consider the following mild generalization of the model in

equation (1):  

                                                           yi = f(xi$)  + ,i,                                                     (8)

where f is a monotonic, twice-differentiable function.   An estimating equation for $

under the standard model assumption, E(,* X) = 0M, is 

     X'G(X)[y ! f(X$)] = 0p,                            (9)

where  f(X$) = ( f(x1$), ...,  f(xM$) )'.    We again call the solution to equation (9) bG.  

Under the extended model, where only E(X',) = 0p is assumed, the arbitrary G(X)

is replaced by IM.  Alternatively, choosing G(X) proportional to F(X)S-1, where F(X) is

the M x M diagonal matrix with Mf(xi$)/M(xi$) in the ith diagonal, minimizes the objective

function: [y ! f(X$)]'S-1 [y ! f(X$)].   For the special case of logistic regression with an

unclustered population, the best choice for G(X) under this criterion is simply  IM.  The

choice for b under the standard and extended models coincide.  

The rest of the analysis of estimating the model in equation (8) closely follows

that of the linear models in the previous sections.  The big difference is that the
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[X'TG(X)TWX]-1 in equation (6') gets replaced by [X'TG(X)TWF(X)X ]-1.

9. Some concluding remarks

In the conventional study of linear models, one usually suppresses concern with

the sampling mechanism and concentrates entirely on the stochastic nature of the

model.  In survey sampling, the reverse is often true: the model is suppressed and

attention is directed exclusively at the sampling mechanism.    The question then is

what is being estimated? 

Fuller (1975) may have been the first to describe how one can estimate the

parameters of a linear model without actually assuming the model.  He concedes that a

unknown model may have generated the data in the finite population, but he is loath to

say much about that model.  Kott (1991) attempts to flesh out that model.  Borrowing

from White (1980), we have put that attempt into a fully stochastic framework here,

calling it “the extended model.”  The key is that if one starts with the linear model in

equation (1) and assumes only that ,i and xi are uncorrelated, then the parameter $ is

estimable in most situation because we have an estimating equation with p equations

and p unknowns.  

The stronger assumption that E(,i * xi) = 0 is what can easily fail in the standard

linear model.  Adding it allows one to construct a more efficient estimator for $ than
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results from ordinary least squares.   Without it, many argue we have no model to

estimate at all.

Magee (1998) and Pfeffermann and Sverchkov (1999) address how to efficiently

estimate the parameters of a standard linear model when the sampling mechanism can

not be ignored; in particular, when ti is correlated with ,i.   It is difficult to extend their

results to situations where the element errors are clustered, as we have seen. 

 Both Magee and Pfeffermann and Sverchkov discuss variance estimation, but

their results most easily apply under Poisson sampling.  Stratification and unequal

probability sampling complicate matters, as we have seen.  Pfeffermann et al. (1998a)

point out that the population must be large for their Poisson arguments to apply for

Samford and Goodman-Kish sampling.   We have seen here that it is the finite

population itself that needs to be large not only the conceptual infinite population about

which we want to make inferences. 

Several additional points about variance estimation need to be emphasized. 

When the sampling mechanism is non-informative (ti and ,i are uncorrelated and 

E(,i *'i) = 0), VRB in equation (6) is an unbiased estimator for the variance of bwG, which

is also unbiased, conditioned on the realized sample.   

When E(,i *'i) � 0 is a possibility, one can abandon conditioning on the realized

sample and draw inferences about the conceptual infinite population using the

randomization-based methods described in the text (equations (6) and (6')).  These
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methods average over all possible samples.   Their use is appropriate only when one

conditions on the relative sizes of the strata in the population as the conceptual

population grows arbitrarily large.  

There are situations where such conditioning makes sense, for example, when

the stratum divisions are politically-determined regions.   The other extreme is when

strata are determined using the yi values.  This can happen when the yi are known for

the entire population, and sampling is only needed for the collection of corresponding xi

values.   In that situation, one needs to measure the additional variance component

discussed in Korn and Graubard (1998).  Graubard and Korn (2002) explores this

matter as well. 

The last point about variance estimation is that the clusters in the population

described in Section 4 need not be the sampling clusters (PSU’s) of Section 5.  We can

assume they are, but that forces us to make an unverifiable assumption.  Moreover, this

assumption does not always render VRB asymptotically unbiased when the sampling

mechanism is informative.   

Both the extended and standard linear models were easily generalized to a class

of non-linear models (see equation (9)).   Pfeffermann et al. (1998b) generalize the

standard model to hierarchical structures.  The applicability of the extended model in

the hierarchical context is less clear.  There are some assumptions about the structure

that simply have to be made.  Similarly, Kott (1996) provides a not-very-satisfying
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treatment of instrumental-variable regression under the extended model.  Again, the

problem is that additional assumption have to be made that violate the spirit of the

extended model.   The standard model has great appeal when, due to random errors in

the explanatory variables, one chooses to use instrumental-variable regression. 

Conducting an instrumental-variable regression with survey data is a different matter

entirely from using an instrumental variable in calibration.  The latter (only) is discussed

in Kott (2002).   
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Appendix A. Variance estimation of a model parameter under unstratified

sampling

 Consider the simplest version of the model in equation (1), where xi = xi = 1.  

The model parameter of interest is the scalar $.  Given an unclustered population of

size M, the full-population estimator for $ is b = 3U
 yj /M.  Now given a probability

element sample S, the conventional sampled-weighted estimator for $ is 

bw = 3S (yj /Bj) / 3S (1/Bj). 

Suppose the M elements in the finite population were chosen using without-

replacement simple random sampling from a larger population of size M*, which we

allow to grow arbitrarily large.   The sample itself becomes the second phase of two-

phase sampling process.  

Let each unit j have (second-phase) selection probability Bj, and assume that no

joint selection probability, Bij, is zero (which rules out systematic sampling) or equal to

BiBj (which rules our stratified sampling).  We are interested here in the (randomization)

mean squared error of bw* = 3 yj /(Bj[M/M*]) / 3 1/(Bj[M/M*]) as M* grows arbitrarily large. 

We can rewrite bw* as $ + 3 ,j /(Bj[M/M*]) / 3 1/(Bj[M/M*]) . 

$ + (M*)-1 3 ,j /(Bj[M/M*]) under the conditions in equation (3'), which we assume to hold. 

Särndal et al. (1992, p. 348, equation (9.3.7)) provide an unbiased mean-squared-error

estimator for the two-phase estimator bw* given a population of size M*:
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var(bw*;M*) = M-2(1 ! M/M*) 3  ,j
2/Bj ! (M !1)-1M-2 (1 !M/M*) 3   ,j,k /Bjk 

                                             j0S                                                j�k         

                                                                                                  j,k0S                                         
                                                                                                                                   (A.1)
                         + M-2 3 (1 !Bj),j

2/Bj
2 + M-2  3  (1 !BjBk/Bjk) ,j,k/(BjBk),

                                  j0S                              j�k

                                                                      j,k0S

where S denotes the sample which has size n.  Taking the limit as M* grows arbitrarily

large, and rearranging terms yields the estimator:

                                               var(bw*;4) =  v0 + A,                                                     (A.2)

where 

v0 = M-2 3  ,j
2/Bj

2 ! M-2(n!1)-1  3  (,j /Bj)(,k /Bk)
            j0S                                j�k
                                           j,k0S

    = M-2 n(n!1)-1 [3 (,j /Bj)
2 ! n-1 ( 3  ,j /Bj)

2]

and

A = M
-2 [n/(n!1)]   3   (,j,k /Bjk){Bjk /(BjBk) ! (n !1)M/[n(M !1)]}.

                             j�k
                          j,k0S

When the expectation of A in equation (A.2) is zero, bw* has asymptotically the

same mean-squared-error estimator, v0, as if the sample had been drawn with-

replacement  from an unstratified finite population.   Now
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                E(A) = M
-2[n/(n!1)]    3 ,j,k{Bjk /(BjBk) ! (n !1)M/[n(M !1)]},                        (A.3)

                                                 j�k
                                              j,k0U

is exactly zero under simple random sampling without replacement.    It is not

necessarily near zero under a without-replacement unequal probability design,

however.   

The text provides reasonable conditions under which E(A) is near zero

asymptotically for Sampford and Goodman-Kish sampling.  Often, however,  these

sampling schemes are used within strata in a stratified design.  Consequently, E(A)

may not be asymptotically zero.   Nevertheless, the strictly nonnegative v0 is likely to

dominate the ambiguously-signed A in practice.


